Formula Sight Reduction Method

Scenario

D.R. Position: $51^{\circ} 54^{\prime} \mathrm{N} 21^{\circ} 55^{\prime} \mathrm{W}$.

Date: 18 July 2009
Zone Time: $16^{h} 44^{m}(+1)$
DWT: $17^{\mathrm{h}} 50^{\mathrm{m}} 28^{\mathrm{s}}$
DWE 40^{s} fast
Body observed: Sun L.L.
Sextant Alt: $32^{\circ} 10.4$. Azimuth: 261°
Index error: +0'. 54
Ht . of eye: 8 m .
Temperature: $28^{\circ} \mathrm{C}$. Pressure: 991 mb .

```
Sight Reduction Form for use with Cosine Formula Method
Observation Notes.
Date: }18\mathrm{ July. }200
DR Pos: 51 54'N, 21' 55'W
Zone: +1 }\mp@subsup{}{}{h
Zone Time: 16 h44
Ht: 8m.
IE: +0'.54
DWT: }1\mp@subsup{7}{}{\textrm{h}}5\mp@subsup{0}{}{m}2\mp@subsup{8}{}{\textrm{s}}\mathrm{ DWE: -40
Temp: 280
Body Observed: Sun L.L.
Sext. Alt: 32' 10.4 Compass bearing: 261'
```

Step 1. Convert DR lat and long to decimals.
Lat: $51^{\circ} .9 \mathrm{~N}$ Long: $21^{\circ} .9 \mathrm{~W}$
(Assumed positions are not used with formula method)
Step 2. Calculate PZ. (90 - Lat).
$P Z=38.1$
Step 3. Calculate Greenwich Date at time of observation.
Date: 18 July. 2009
Zone time: $\quad 16^{\mathrm{h}} 44^{\mathrm{m}}$
Zone correction: $+1^{\text {h }}$
Universal Time (GMT): $17^{\mathrm{h}} 44^{\mathrm{m}}$
Deck watch time: $17^{\mathrm{h}} 50^{\mathrm{m}} 28^{\mathrm{s}}$
Deck watch error: -40^{5}


```
Reminder: The formula for calculating Zenith Distance \((Z X)\) is:
\(\operatorname{Cos}(Z X)=[\operatorname{Cos}(P Z) \times \operatorname{Cos}(P X)]+[\operatorname{Sin}(P Z) \times \operatorname{Sin}(P X) \times \operatorname{Cos}(Z P X)]\)
Substituting the values of PZ, PX, and ZPX in this formula, we have:
\(Z X=\left[\operatorname{Cos}(38.1) \times \operatorname{Cos}\left(69^{\circ} .1\right)\right]+\left[\operatorname{Sin}(38.1) \times \operatorname{Sin}\left(69^{\circ} .1\right) \times \operatorname{Cos}(63.98)\right]\)
\(=[0.7869 \times 0.3567]+[0.6170 \times 0.9342 \times 0.4387]\)
\(=0.2807+0.2528\)
\(=0.5335\)
\(Z X=\operatorname{Cos}^{-1}(0.5335)=57.7577\)
\(\therefore\) Zenith Distance at DR position \(=57.7577\)
Step 12. Calculate Azimuth Angle at DR Position (PZX)
\(P Z=38.1 \quad\) (From Step 2)
\(P X=69^{\circ} .1 \quad\) (From Step 6)
\(\mathbf{Z X}=57.7577\) (From Step 11)
Reminder: The formula for calculating azimuth angle (PZX) is:
\(\operatorname{Cos} \mathrm{PZX}=\operatorname{Cos}(P X)-[\operatorname{Cos}(Z X) \times \operatorname{Cos}(P Z]\)
    \([\operatorname{Sin}(Z X) \times \operatorname{Sin}(P Z)]\)
Substituting the values of \(P Z, P X\) and \(Z X\) in the above formula, we have:
\(P Z X=\underline{\operatorname{Cos}(69.1)}-[\operatorname{Cos}(57.7577) \times \operatorname{Cos}(38.1]\)
    \([\operatorname{Sin}(57.7577) \times \operatorname{Sin}(38.1)]\)
\(=\underline{0.3567-[0.5335 \times 0.7869]}\)
    \(0.8458 \times 0.6170\)
\(=\underline{0.3567-0.4198}\)
    0.5219
\(=-\frac{0.0631}{0.5219}\)
    0.5219
\(=-0.1209\)
\(P Z X=\operatorname{Cos}^{-1}(-0.1209)=96.944\)
\(\therefore\) Calculated azimuth Angle at \(D R\) position \(=096.944\)
```


Step 14. Calculate intercept.
Reminder: Subtract the ZD at the true position (a) from the ZD at the DR position (b).

- If the result is positive, the intercept is towards the azimuth.
- If the result is negative, the intercept is from the azimuth.

a. Zen. Dist. at DR Pos:	$57^{\circ} .7577$	(from step 11)
b. Zen. Dist. at True Pos: $57^{\circ} .658$	(from step 10)	

Intercept: $\mathrm{a}-\mathrm{b}=0^{\circ} .0997$ Convert to minutes: $5.982^{\prime} \quad$ (multiply by 60)		
True Azimuth: 263°		
Intercept: 5.982 to 263°		

Step 15. Plot the position line.
(Reminder: Plot intercept from DR position along azimuth line).
DR Lat: $51^{\circ} .9 \mathrm{~N}$ DR Long: $21^{\circ} .9 \mathrm{~W}$ (from step 1)
Intercept: 5.982^{\prime} to 263° (from step 14)

