Sight Reduction Form for use with Formula Method For use with Chapter 6 (Planet)

Note. This sight form has been designed as a learning aid for use with the book 'Celestial Navigation' by Jack Case. It is not designed for practical use although it may be. © Copyright Jack Case 2016

Observation Notes.				
Date:				
DR Pos:				
Zone:				
Ht:				
IE:				
DWE:				
Temp:				
Body Observed:				
Sext. Alt:	Compass bearing:			
DWT:	Zone Time:	(see note 3)		
Step 1. Convert DR $$	lat and long to decimals	•		
Lat: L	-ong:			
Step 2. Calculate PZ. (90 - Lat). (See note 6). PZ =				
Step 3. Calculate G	reenwich Date at time (of observation. (See note 3).		
Date:		,		
Zone time:				
Zone correction:				
Universal Time (GMT):			
Deck watch time:				
Deck watch error:				
Greenwich date:				
Step 4. Calculate Gre	enwich Hour Angle and	Declination. (See notes 12 and 13		
Date:				
	GH	IA .		
GHA:				
Inc:				
v correction:		(Moon and planets only)		
Corrected GHA:				
	Dec	c		
Dec:				
d correction:				
Corrected Dec:		(See Note 2)		
HP:		(Moon only)		

```
Step 6. Calculate PX. (90 - Dec if same) (90 + Dec if contrary). (See note 6).
PX =
Step 7 Calculate LHA: Long East, LHA = GHA + LONG (- 360° as necessary)
                        Long West, LHA = GHA - LONG (+ 360° as necessary) (See note 12)
GHA:
DR Long:
                               West (-) East (+)
LHA=
Step 8. Determine Angle ZPX. (See note 18).
ZPX = LHA =
Step 9. Calculate True Altitude at True Position (Observed altitude corrected for
IE, Dip, Parallax and Refraction). (See note 14).
Sextant Altitude:
Index error (IE):
Observed Altitude:
Dip (ht. 8m.):
                                            (table 6a)
Apparent Altitude:
Altitude correction:
                                             (table 6d)
HP Correction:
                                             (Moon only)
Semi-diameter:
                                              (Moon only)
Added refraction =
                                             (table 6c)
True Altitude =
Note compass bearing at time of observation:
Step 10. Calculate Zenith Distance at True Pos. (90° - Altitude). (See note 11).
Zenith Dist =
Step 11. Calculate Zenith Distance at DR Position. (ZX). (See notes 6 and 11).
ZPX:
                           (From Step 7)
PZ:
                           (From Step 2)
PX:
                           (From Step 6)
Reminder: The formula for calculating Zenith Distance (ZX) is:
Cos(ZX) = [Cos(PZ) \times Cos(PX)] + [Sin(PZ) \times Sin(PX) \times Cos(ZPX)]
∴ Cos (ZX) =(
ZX = Cos^{-1} (
                ) =
.: Zenith Distance at DR position =
```

```
Step 12. Calculate Azimuth Angle at DR Position (PZX) (See notes 4 and 5 and 6).
```

Data calculated to date:

PZ = (From Step 2)
PX = (From Step 6)
ZX = (From Step 11)

Reminder: The formula for calculating azimuth angle (PZX) is:

 $Cos PZX = Cos(PX) - [Cos(ZX) \times Cos(PZ]]$

 $[Sin(ZX) \times Sin(PZ)]$

∴ Cos PZX = ()

 $PZX = Cos^{-1}() =$

:. Calculated azimuth Angle at DR position =

Step 13. Convert azimuth angle to true azimuth (ZN): (See note 4).

Rules for converting Azimuth Angle (PZX) to True Azimuth (Zn)		
	Lat. North	Lat. South
LHA>180°	Zn = Z	Zn = 180° - Z
LHA<180°	Zn = 360°-Z	Zn = 180° + Z

DR Lat: (from step 1)

Azimuth Angle (Z): (from step 12)

LHA: (from step 7)

ZN = (calculate from the table above)

Therefore calculated true azimuth at DR position =

Step 14. Calculate intercept. (See note 7).

Reminder: Subtract the ZD at the true position (a) from the ZD at the DR position (b).

- If the result is positive, the intercept is towards the azimuth.
- If the result is negative, the intercept is from the azimuth.

TI THE TESUT IS HEGULTY	e, me intercept is from the azimam.	
a. Zen. Dist. at DR Pos:	(from step 11)	
b. Zen. Dist. at True Pos:	(from step 10)	
Intercept: a - b =	(multiply by 60 to convert to minutes)	
True Azimuth:		
Intercept:	(value of intercept from or to azimuth)	

Step 15. Plot the position line. (See notes 8 and 9 and 10)

(Reminder: Plot intercept from DR position along azimuth line).